Cindy Bee Awarded Beekeeper of the Year at Georgia Beekeepers Association Fall Meeting

Cindy Bee accepting Beekeeper of the Year Award from last year’s recipient, Jennifer Berry
Cindy Bee has been involved with honey bees and the industry for many decades. Her first beekeeping adventure actually happened by accident. Cindy’s father had to leave town on an emergency business adventure and forgot about the package of bees he had ordered. The bees arrived and Cindy’s mother, who hated bees, answered the door. Needless to say she was not very happy. Cindy, 11 at the time, decided it was her job not only to save the bees but her dad as well. When her father retired he turned his bees and equipment over to her. She then started her own bee removal business and has been owner and operator of Bee’s Honeybee Removal Co. for over a decade. As a degreed educator and Master Beekeeper, she works extensively with the beekeeping community as well as the general public. She is past-President, Vice-President and Secretary of Metro Atlanta Beekeepers, is currently on the board of directors, and runs DillonBee Apiaries based in Marietta, Georgia. She has mentored several beekeepers, given numerous talks for different groups, been interviewed by newspapers, radio and TV personnel and accumulated all sorts of stories along the way. Several years past Cindy was awarded an achievement award for her outstanding dedication to beekeeping in the state of Georgia. She was also extremely instrumental in last year’s EAS meeting as Volunteer Coordinator. Cindy has proven herself a vital part of the beekeeping community and it was my honor handing her this award.

The Georgia Beekeepers Association Fall meeting was held in Newnan with Dr. Dewey Caron from the University of Delaware as guest speaker. Dr. Caron discussed honey bee nutrition, bee products and Africanized bees. He also gave a personal invitation for this year’s EAS conference and short course in Delaware. The EAS 2007 meeting will be held August 6th through the 10th. For more information about EAS and the upcoming event visit their website at www.easternapiculture.org. Rounding out the program were Dr. Mike Hood, Dr. Paul Arnold, Dr. Keith Delaplane, Carl Webb, Michael Gailey, Keith Fielder, Robert Brewer, Eleanor Spicer and Jennifer Berry. There was a traditional Low Country Boil prepared by J.M. and Frieda Sikes which was again the best in the state.
New officers were elected during the business meeting. Here is the list of GBA’s new officers.

- Keith Fielder – President
- Wayne Barnet – Vice President
- Evelyn Williams – Treasurer
- Tom Bonnell – Secretary
- Dale Richter, Jessie McCurdy, Bob Binnie – Board Members

Georgia Beekeepers Association Spring Meeting
February 24th 2007
Moultrie, Georgia

This year’s spring GBA meeting will be held in the Colquitt County Extension Office in Moultrie, Georgia. The address and pre-registration forms can be found on the Georgia Beekeepers Association website at www.gabeekeeping.com. Fred & Ann Rossman of Rossman apiaries has invited everyone to tour their operation from 1:00-5:00 the day prior to the meeting, February 23rd. There will be a fish fry that evening starting at 6:00 pm which is included in registration fees. If you pre-register you will save money plus it gives them a better idea of how many to expect. It helps to know how much food to prepare days prior as opposed to the day of the event. If you need a place to stay the association has blocked off some rooms at the Best Western Hotel (1300 Veterans Parkway, Moultrie) for $58.50 per night. The hotel is located about 1 mile from the county extension office and the number is (229) 890-8652. Speakers this year include the following:

- Dr. Elizabeth Cantrell will be delivering a program about apitherapy.
- Dr. Keith Delaplane will address the disappearing bee disease.
- Bob Binnie will talk about his honey processing operation.
- Jim Quick will speak about spring hive management.
- Fred Rossman will discuss shipping rules and regulations.
- Virginia Webb, Eleanor Spicer & others will talk about related topics.
This year’s Young Harris Bee Institute will be held May 18th and 19th with training and certification for the Master Beekeeping program and the Welsh Honey Judge Certificate starting the 17th. The Institute will be held at Young Harris College, Young Harris, which is located in the mountainous regions of north Georgia. For those of you who have never attended the Institute, it is well worth the trip. This is the 16th year that the UGA honey bee lab and Young Harris College have offered the institute. Facility limitations force us to cap enrollment to 150, therefore if you are interested in attending this year’s event, we urge you to pre-register. More information and registration will soon be available on our website at www.ent.uga.edu/bees.

Nosema ceranae Discovered in the US

It looks as though we may have a new protozoan in our midst. Dr. Tom Webster at Kentucky State University has recently found Nosema ceranae in one of their KSU hives. This particular hive had migrated from Kentucky to Florida last October. Bees sampled in December tested positive for Nosema ceranae. The N. ceranae spores were also found in a Kentucky beekeeper’s operation whose colonies had migrated to Florida. Dr. Webster stressed that this information is extremely tentative at this point. His lab is working on this issue and will have more information in the upcoming month. But for now it does indicate that a new disease may be afoot.

Early last year N. ceranae was positively identified in Apis mellifera colonies in Spain. This was the first reported case of colonies infected by N. ceranae in Europe. It is now believed that the “bee depopulation syndrome” experienced over the years in Europe may be related to this disease. Until recently, Apis cerana has been the natural host for N. ceranae. The causative agent for Nosema in the States is Nosema apis, which rarely causes major losses in infected colonies. However, if left untreated, N. apis can cause queen supersede, winter kills, reduced honey yields and dwindling populations. N. ceranae and N. apis
have similar life cycles, but differ in spore morphology with *N. ceranae* spores being slightly smaller. Perhaps the most significant difference (for the beekeeper) is how quickly a colony can collapse. Bees die within 8 days after exposure to *N. ceranae* which is faster than bees exposed to *N. apis*. This high mortality rate demonstrates that *N. ceranae* is highly pathogenic to *Apis mellifera*. The foraging force seems to be affected the most. They leave the colony and are too weak to return therefore die in the field. This leaves behind a small cluster hence a weakened colony. *N. ceranae* does respond to Fumagillin which is good news for the beekeeper. We will keep you updated when more information is available.

How Doth the Little Busy Bee?

by Mary Timmins

This article appeared in the January 2007 Illinois Alumni Magazine.

What goes on in the mind of a honey bee? Handsome, intimidating and industrious, these insects have won celebrity playing such stock roles as worker, queen and drone. But honey bees also understand how to change jobs in tough times. They have internal clocks, can tell each other how to get to the local nectar bar and will strike a deal for a new home when the swarm's real estate needs dictate. How do they know what to do and when?

For Gene Robinson, who heads the humming colony that is the University of Illinois Bee Research Facility, genes are the connection between the thoughts and deeds of a bee. An entomological researcher whose work has won him membership in the esteemed National Science Foundation, Robinson has long sensed that genes play a vital role in the complex, interrelated and adaptive behaviors essential to a successful bee colony. Now, thanks to important new research, that role is slowly being identified and described.

Led by Robinson in an enormous four-year project completed just last October, an international consortium of 112 researchers at 63 institutions sequenced the genome of the honey bee, which has the distinction of being just the third insect to be thus studied (after the malaria mosquito and that most ubiquitous of lab bugs, the fruit fly). A genome comprises the list of genetic codes that define the physical makeup and, to a great extent, the destiny of a living organism. Replicated in cells throughout the organism, the genome is "written" in four-base sequences of amino acids, which deliver instructions to cells, telling them how to take shape and grow. First publicized in Discover and Science magazines, the honey bee genome project captured the imagination of the world, with coverage in newspapers from Los Angeles to New Zealand to India to Germany. Sequencing the genome has provided a massive, potent tool for bee research and genetics. "The bee genome allows us to begin to understand, at the molecular level, what parts of the brain influence behavior," Robinson explained. "Bees live in one of the most complex societies on earth. Through lots of coordination and communication, they have successfully spread throughout the world," said Robinson. "There are many secrets to their success."

As social insects, honey bees - known scientifically as *Apis mellifera*, Greek for "honey-carrying" - embody principles of self-organization that scientists have only begun to comprehend. The bee way of life is ultra-interdependent and complex. Biologically, a bee colony is a "superorganism" - one big living creature meshed from tens of thousands of little living creatures. Colonies engage in group-think so intriguing - it's innate and yet adaptive - that bee behavior can show humans, who aren't nearly so well-organized, a few things about what it means to get along together. As caregivers, chefs, construction workers, farmers, SWAT teams, executives, aristocracy and undertakers, bees collaborate in a model that Robinson describes as "a flat organization chart." Workers manufacture honey and wax, feeding and sheltering the swarm. Foragers gather nectar. Drones mate with the queen, who produces the larvae. When the swarm grows too large, a small group of scout bees will find a site for a new hive - and, by
communicating in ways not well understood outside the insect world, a section of the swarm will split off
and follow the scouts thence. And all of it buzzes along without benefit of hierarchy, outside consultancy
or instruction manual - save what's encoded in the brain of the bee. "Bees make decisions as a colony. No
one's in charge," Robinson explained. "I like to say, 'The lights are on, but nobody's home.'"

The Robinson Laboratory, where results from study in the UI Bee Research Facility are analyzed, has
attracted millions in funding from agencies such as the National Science Foundation to study, among
other questions, the connections between bee genes and bee behavior - a success story so impressive that
the laboratory has become part of the new Institute of Genomic Biology at the U of I. Robinson likens his
study of bee behavior to "Russian dolls nested within one another" -the bee colony within the
environment, the bees within the colony, the brains within the bees, the genes within the brains, all
reflecting versions, correspondingly large and small, of the same information.

To study bees, UI researchers flash freeze the insects as they buzz unsuspectingly about their chores in the
Bee Research Facility, located on the south side of the Urbana campus. This technique of sudden death
allows for the study of genes expressed in the bees' brains during specific bee activities. The researchers
dissect the bees' brains - no easy bit of biology here, working on organs about the size of a grain of sand
-and process the cellular material with the help of such high tech equipment as mass spectrometers and
microarrays. The results are writ upon small glass slides spotted with genes and pieces of genes, 28,000
spots per slide, each spot a word or phrase or punctuation mark in the stupendous Bible of the bee's
interior life.

What Robinson and his colleagues are finding is an unexpectedly fluid balance between heredity and
environment. While some behavior-associated genes in the brain of the bee are more active at particular
life stages, when bees face certain stimuli - a shortage of food, for example, or an abundance of larvae -
genesis in their brains get turned on ("expressed"), and the bees then behave accordingly. Shortages in "the
bee labor market" - Robinson's phrase for a key area of his research - can, for example, cause young bees
to mature more quickly than usual so that they can go looking for food. Other genes get expressed when
the hive gets hot, impelling worker bees to bring water and fan their wings to create a kind of air
conditioning. Bees also have internal clocks linked to genetic information they share with humans. Thus,
along with pollen and nectar, honey bees carry around fundamental information that's tilting the nature/
nurture debate.

First enchanted by bees as an 18-year-old undergraduate on break from college, working with a hive on
an Israeli kibbutz, Robinson earned his bachelor's in biology from the State University of New York, then
held positions as an apiary inspector, a queen breeder and a beekeeping trainer. He pursued a doctorate in
entomology at Cornell University, going on to postdoctoral study in genetics and molecular neurobiology
and a high-profile career in genetic molecular microbiology expressed, as it were, by the honey bee.

As an apiarist, Robinson is worried about honey bees, which keep the world in fruit and nuts. "The
premier pollinators on earth, they [bees] account for between $10 billion and $20 billion worth of food
produced each year," he said. In questing after nectar, honey bees also pick up pollen from flowers, taking
it from blossom to blossom. This activity fertilizes trees and plants, allowing them to reproduce and
strengthening their genetic diversity, in one of nature's prettiest symbiotic relationships. But the US.
honey bee population has declined approximately 30 percent in the last 20 years, a dwindling attributed to
varroa mites and pesticides and one that could leave a potentially devastating void in the world's food
supply chain. In 2005, for the first time in 83 years, agriculturalists had to begin importing extra honey
bees from Australia to the United States to pollinate crops.

As a geneticist, Robinson is also concerned about how genetics is perceived in an increasingly diverse
world where the assertion that ability may be affected by genetic predispositions is hardly a popular or
appealing one. Robinson recently wrote an editorial on the subject for The New York Times. "Many
people," he wrote, "[are] troubled by the ethical implications of genetic determination; it is as if giving a
nod toward the genes automatically diminishes the role of the environment and free will. As much as
people like to divide themselves into nature or nurture camps," he wrote, "what genes actually do in the
brain reflects the interaction between hereditary and environmental behavior." In fact, Robinson believes
that as more becomes known about the interplay of genes with behavior and the environment, the
argument for genetic profiling - examining an individual in terms of genetic makeup for certain
characteristics - may weaken rather than strengthen. Thus, while knowledge gleaned from bee research
can be applied to humans, he'd rather not do so. "I like to say that bees are complex," he said, "and
humans are unfathomable."

How doth the little busy bee
Improve each shining hour,
And gather honey all the day
From every opening flower!
- Isaac Watts

Management Calendar: February through April

Listening to beekeepers across the state, I’m becoming aware that this has been an unusually hard winter
for most. Bee kills, mainly from commercial operations, are being reported from all parts of the area,
especially in the southern regions. There are many questions about this newly-termed “Fall Dwindling
Disease” or “Colony Collapse Disorder” but for now there are no answers, only speculations (N.
ceranae?). The USDA Bee Labs, Penn State, and others are involved and taking this matter seriously.
They have traveled to areas hard hit and taken samples whenever available but nothing concrete as of yet.
So, where does that leave us? What should we do? To start, how about providing our colonies with
everything they need in a suitable environment. And there’s no better time to begin than spring.

Here in the piedmont region, red maple is already in bloom
a full month ahead of schedule. This isn’t good. Red maple
provides a steady income of pollen which furnishes protein
for the growing young. This is also the colonies’ cue that
the weather is warming and soon a full menu of nectar will
be available. The unusual warm start of January tricked not
only our bees but plant life as well. And now with this
latest blast of cold air they may both be in trouble. The
blooms are there but the temperatures are too cold for the
bees to visit them. Foraging activities usually require
temperatures to be in the 60s, not lower 50s and 40s. At
this point, we have a timing problem. The blooms are too
eyearly, cold weather has set back in, the bees are unable to forage, and the blooms may drop off before
temperatures can rise. Thus, pollen intake may not be able to keep up with the needs of this early brood
rearing. Honey stores are also on the decline, hence colony intervention may be at hand. Plus swarm
season and other colony tasks are just around the corner. Recently, I finished an article for the March
issue of Bee Culture. If I may, I would like to share that information with you about feeding, swarm
management and treatments.

It is crucial that you check your colonies this month for honey and pollen supplies. If it is still too cold to
enter the colonies, lift them from the rear to determine the weight. If the colony feels light, feed a 2:1
sugar syrup solution directly on top of the cluster with either an inverted bucket feeder or gallon baggy.
Do not rely on Boardman entrance feeders or hive top feeders in cold weather since the bees are unable to
leave the cluster to feed. Also, don’t be skimpy on syrup. Think in terms of gallons per colony, not quarts.
Proper placement of honey is also important. It’s painful to find that a colony starved even with 30-40 pounds of honey still in the super just out of their reach. Sharp drops in temperatures or prolonged cold weather can separate the cluster from the honey supplies and therefore they die. That is why it is necessary to put food right next to the cluster. Not only is honey being consumed, but pollen as well. If pollen loads were light last year don’t forget pollen patties. With brood rearing in full gear, pollen supplies are in high demand.

Now for the next hurdle and probably the most frustrating: swarm management. Here in the piedmont region of Georgia we can experience swarms as early as February, but they usually begin at the commencement of the spring nectar flow. I’ve seen too many of my bees hit the trees over the years, so I take this pretty seriously. Plus, with a queen breeding operation, you really don’t want your breeder queens flying away with all the goods. Once temperatures allow, go through each of your colonies and assess their condition: food quantities, queen quality and overall strength of the colony. Keep records of each colony’s condition. If the colony is weak and the queen performing poorly, it is best to combine that colony with another, unless you have a queen in the mail so to say. If the queen is poor, replace her as soon as possible. Re-queening is one method of swarm control even if the old queen is still doing well. A fresh new queen with her new aroma will sometimes confuse the bees into thinking they have swarmed. But remember, swarming is the colony’s way of reproducing. To swarm means to survive and all creatures big or small are inherently programmed for survival. Another way to discourage swarming is to equalize colonies or produce splits. After your inspection, you’ll know your colonies’ conditions, especially since you kept records. Strong colonies are the first to hit the trees. Swarming cues like overpopulation, congestion, and a nectar flow are all they need. Take 3-5 frames of bees and brood (make sure you have enough bees covering the brood, and you don’t take the queen) and add it to a weaker colony. Or, if you’re ready to expand, put the frames into nuc box or a single deep and move the bees to a new site; otherwise the bees will fly right back to their original colony. If queens are unavailable, let the colony re-queen itself. Sometimes a beekeeper finds himself with too many bees, so selling frames of bees and brood is a great way to reduce numbers. Since bees move up in the winter months, hive reversal or adding empty supers may alleviate some of the congestion. This is only a temporary solution and will not stop the urge to swarm. OK, if you don’t have extra boxes, don’t want to expand, and don’t know anyone else in the bee business, there is still hope. Cutting queen cells on a regular basis is probably your best strategy against swarming. Actually here at the lab, we cut queen cells in all of our breeder colonies once a week. However, we still lose bees to the trees. One quick note, while making your assessments, this is a great time to cull out old combs and replace with new foundation. Put a date on your new frames so you can keep track of their age.

Let’s see, you’ve tackled your colonies’ needs and desires so now it is time to deal with diseases and pests. They come in all shapes and sizes, from all parts of the world, and depending on where you live, some or all need to be taken seriously. They can be a major obstacle, but with patience and good management you can win the battle. With all the concern about varroa mites, we sometimes lose sight of other issues; one being the tracheal mite. We haven’t seen the colony losses like in years past, but
Tracheal mites can still pose a threat to your colonies. If you haven’t already done so, now is the time to treat with oil extender patties: two parts sugar to one part vegetable shortening or oil. If you have only a few colonies to treat, make up small patties about four inches in diameter and ½-inch thick and place on a piece of wax paper. If there are large numbers of colonies to treat this may help. Fill a bucket with the mixture and purchase an ice cream scoop for just this purpose. Take wax paper and pre-cut them into 6-inch squares. Place one square on top of the frames in the brood chamber. Scoop out one large serving and place it onto the pre-cut wax paper. While the bees consume the sugar, oil from the patty will adhere to their bodies. The oil acts like a shield thus the tracheal mites are unable to recognize suitable young, hosts. Oil patties are acceptable for prolonged treatment since the oil will not contaminate honey supplies. Resistant stock has also helped ease the pressure of tracheal mites, but don’t rely on that solely. Most people recommend that you treat with Terramycin (for AFB and EFB) and Fumagilin-B (for Nosema) this time of year. This is a practice that we avoid at the lab. We occasionally see European foulbrood (EFB), but usually refrain from treating with chemicals. We start by removing and destroying the infected frames and adding some healthy brood. If the queen is poor, out the door she goes and in with a new. As far as Nosema, I’ve never seen it here in Georgia. Not that it doesn’t occur, it’s just very rare to see outbreaks here in the South. But one thing we do have is small hive beetles. Our southern cohorts have a more difficult time with these pests than we do in the northern and central regions of Georgia. (Not to say we don’t have the little vermin scurrying around in every colony.) At this point, we don’t employ any kind of small hive beetle control, other than keeping our colonies healthy and queenright. There are several traps on the market which work well in reducing beetle numbers but will not completely eliminate them. This is ok. Colonies can withstand a certain number of beetles. At this time, there is only one chemical approved for use in honey bee colonies for the control of small hive beetles. But remember, chemical controls are expensive, eliminate the problem only momentarily and leave contamination behind for years.

Finally, let’s review our spring procedures for varroa mites. For years, just like in disease control, it was recommended to treat your colonies in the spring and fall for mites. Understandably, you don’t want to allow the overwintered mites to gain a foothold now that brood rearing has commenced. However, why waste time and money if the mite population hasn’t reached the economic threshold (ET). Simply, the ET is a number which represents the population of mites that should trigger action from the beekeeper. The ET is the cornerstone for all Integrated Pest Management (IPM) practices. Sticky screens are placed into each colony for 24 hours to derive this number. In the Southeast we consider the ET a 24-hour mite drop of 60 – 180 mites; this is the mite level that warrants a treatment. It’s always advisable to use an ET derived as closely as possible for your particular region. There are chemical and non chemical methods for reducing mite populations. The most common non-chemical ones are bottom screens, drone trapping, powdered sugar, and resistant queens. These all help in reducing mite populations inside your colonies; however resistant queens are likely the key. With the constant pressure of varroa, honey bees have had to adapt in order to survive. This natural adaptation has been amplified with the help of queen breeders who select stock that’s resistant to varroa. This is a subject we could go into greater depth about, but let’s leave it for now.
Electronic Delivery of *Georgia Bee Letter*

If you would like to receive *Georgia Bee Letter* via email, send me your address at jbee@uga.edu. Please put a reference to the GBL in the subject line so I know you are requesting the newsletter. Every day I receive numerous advertisements or “spam,” and I delete them immediately. If you have sent me your address and not received the *GBL*, please send it again. Since the last time I sent out this newsletter I was hit with a virus which wiped out all my new/old mail. Yes, this has happened before so I have changed my e-mail address which should be more secure. Also, notify me if there are changes to your club meeting times or contact persons, or any interesting information about your club.
How to Get Georgia Bee Letter

GBL can be received electronically by emailing your request to jbee@uga.edu

Regular Meetings

<table>
<thead>
<tr>
<th>Organization</th>
<th>Times and Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chattahoochee Beekeepers Association</td>
<td>7:00 pm bimonthly, second Monday, Oxbow Meadows Nature Center, Columbus</td>
</tr>
<tr>
<td>Cherokee Beekeepers Club</td>
<td>7:00 pm second Monday, Cherokee County Justice Building, Canton</td>
</tr>
<tr>
<td>Coastal Area Beekeepers Association</td>
<td>7:00 pm second Monday, Southbridge Tennis Complex, Savannah</td>
</tr>
<tr>
<td>Coweta Beekeepers Association</td>
<td>7:00 pm second Monday, Coweta Fairgrounds Conference Center</td>
</tr>
<tr>
<td>East Central Georgia Bee Club</td>
<td>7:00 pm fourth Monday, (bi-monthly), Burke Co. Office Park Complex</td>
</tr>
<tr>
<td>Eastern Piedmont Beekeepers Association</td>
<td>7:30 pm first Monday, Bishop Community Center, Bishop</td>
</tr>
<tr>
<td>Foothills Beekeepers Association</td>
<td>7:00 pm third Tuesday, February - September, Banks Co. Ext Office, 413 Evans St., Homer</td>
</tr>
<tr>
<td>Forsyth Beekeepers Club</td>
<td>6:30 pm Monday, Forsyth County Library, Cumming</td>
</tr>
<tr>
<td>Heart of Georgia Beekeepers Association</td>
<td>7:00 pm second Monday, GA Farm Bureau, 1620 Bass Rd., Macon</td>
</tr>
<tr>
<td>Metro Atlanta Beekeepers Association</td>
<td>7:00 pm second Tuesday, Dunwoody Nature Center, Dunwoody</td>
</tr>
<tr>
<td>Mountain Beekeepers Association</td>
<td>7:00 pm second Thursday, Mountain Regional Library, Young Harris</td>
</tr>
<tr>
<td>Northeast Mountain Beekeepers Association</td>
<td>7:00 pm second Thursday, Northeast Georgia Regional Library, Clarksville</td>
</tr>
<tr>
<td>Northwest Georgia Beekeepers Association</td>
<td>7:00 pm second Monday, Jan - June & Sept, Walker County Agric. Center, Rock Spring</td>
</tr>
<tr>
<td>Southeast Georgia Beekeepers Association</td>
<td>7:00 pm fourth Tuesday, Aug-March, Waconia School Building, Waycross</td>
</tr>
<tr>
<td>Tara Beekeepers Assn (Clayton Co. area)</td>
<td>7:30 pm last Tuesday, even months, Swords Apiaries, Moultrie</td>
</tr>
<tr>
<td>Tara Beekeepers Association</td>
<td>7:30 pm third Monday, Reynolds Nature Preservation</td>
</tr>
</tbody>
</table>

Beekeeping Subscriptions

- **American Bee Journal**, Hamilton, Illinois 62341
 (217) 847-3324
- **Bee Culture**, 623 W. Liberty Street, Medina, Ohio 44256
 (330) 725-6677
- **The Speedy Bee**, P.O. Box 998, Jesup, Georgia 31598-0998
 (912) 427-4018

Resource People for Georgia Beekeeping

<table>
<thead>
<tr>
<th>Organization</th>
<th>Contact Information</th>
</tr>
</thead>
</table>
| Chattahoochee Valley Beekeepers Assoc. | Jim Harris, President
 34333 Pontiac Drive
 Columbus, GA 31907
 (706) 563-4186 |
| Cherokee Bee Club | BJ Weeks, President
 770-735-3263
 bnweeks@juno.com |
| Coastal Empire Beekeepers Association | Greg Stewart, President
 124 St. Ives Way
 Savannah, GA 31419
 (912) 232-6734
 greg_stewart@mhsmail.gulfaco.com |
| Coweta Beekeepers Association | Charles Olsen
 (770) 304-2737
 ceolsenga@juno.com |
| East Central Georgia Bee Club | Edwin S. Stephens, President
 522 Pine Needle Rd.
 Waynesboro, GA 30830 |
| Eastern Piedmont Beekeepers Assoc. | Bill Owens, Chairman
 (770) 266-6619 |
| Foothills Beekeepers Association | Michael Gailey, President
 (706) 776-1843 |
| Forsyth County Beekeepers | Jan Payne
 2926 Pruitt Road
 Cumming, GA 30041
 (706) 781-2959 |
| Georgia Dept. of Agriculture | Barry Smith, Manager
 Apiary Program
 P.O. Box 114
 Tifton, GA 31793
 (912) 386-3464
 bsamfl@ag.state.ga.us |
| Georgia Beekeepers | Martha Kiefner, President
 (770) 668-0981 |
| Mountain Beekeepers Association | Larry Sams, President
 158 Needlemore Drive
 Hayesville, NC |
| Northeast Mountain Beekeepers Assoc. | John Haase, President
 (706) 865-1085 |
| Northwest Georgia Beekeepers Association | Dave Reed, President
 6807 Cedar Wood Court
 East Ridge, TN 37412 |
| Southeastern Georgia Beekeepers Assoc. | Bobby Colson
 945 Sinkhole Rd.
 Register, GA 30452
 (912) 852-5124 |
| S.W. Georgia Beekeepers | Sonny Swords
 5 - 28th Avenue N.W.
 Moultrie, GA 31774
 (912) 941-5752 |
| Tara Beekeepers Association | Gary Cooke, President
 (770) 507-4661
 Lcooke77@aol.com |
| Town County Coordinator | Jennifer Berry
 Georgia Master Beekeeper Coordinator
 PO Box 369
 Hiawassee, GA 30546
 (706) 896-2024
 RBrewer@uga.edu |
| University of Georgia | Keith S. Delaplane
 Professor of Entomology
 University of Georgia
 Athens, GA 30602
 (706) 542-2816
 ksd@uga.edu |

Signature: Jennifer Berry, Research Coordinator